Enhancing Grid Resilience for Giga-Watt Scale Data Centers Using High Voltage Circuit Breaker Operated Braking Resistors
Episode

Enhancing Grid Resilience for Giga-Watt Scale Data Centers Using High Voltage Circuit Breaker Operated Braking Resistors

Dec 24, 20258:18
eess.SY
No ratings yet

Abstract

As hyperscale and co-located data centers scale, the electric grid sees an increase in large, voltage-sensitive IT loads with these data center plant size ranging between 500 MW to 2 GW. A sudden loss of these loads as they switch to onsite UPS during grid voltage excursion events causes a grid frequency rise from generation and load imbalance, and a voltage rise because less power is flowing through the network. This paper proposes and theoretically demonstrates the use of high voltage circuit breaker operated braking resistors at data center transmission substations as an effective strategy in enhancing grid resilience under such large load loss scenarios. We developed a test bed to illustrate the dynamic behavior of the system with resistive braking on a gigawatt scale data center load cluster connected to a 345 kV network. The braking resistor(s), which in the case of inverter rich system comes in a multi-stage configuration, are connected or disconnected via high-speed circuit breaker(s). Results show that insertion for 0.25 to 0.85 seconds sufficiently reduce rate of change of frequency and provides time for primary governor response and capacitor switching to restore steady state. Sensitivity across different synchronous machines and inverter-based resource mix are tested and confirms robustness. We conclude circuit breaker controlled resistive braking is a practical means to enhance Bulk Electric System (BES) resilience for gigawatt scale data centers. The approach integrates with protection, needs no generator changes, and can be scaled with cluster size or growth of the data center facility load.

Links & Resources

Authors